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Figure 1: Interior scene automatically populated by furniture objects using our method. Generated interior design is shown
with original materials (left) and with new material assignment which was automatically optimized to achieve consistency

and color harmony (right).

ABSTRACT

In this paper, we present a system that automatically populates
indoor virtual scenes with furniture objects and optimizes their
positions and orientations with respect to aesthetic, ergonomic
and functional rules called interior design guidelines. These guide-
lines are represented as mathematical expressions which form the
cost function. Our system optimizes the set of multiple interior
designs by minimizing the cost function using a genetic algorithm.
Moreover, we extend the optimization to transdimensional space
by enabling automatic selection of furniture objects. Finally, we
optimize the assignment of materials to the furniture objects to
achieve a unified design and harmonious color distribution. We
investigate the capability of our system to generate sensible and
livable interior designs in a perceptual study.
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1 INTRODUCTION

Interior design, including the selection of furniture objects, their
layout and materials, is a challenging task which requires profes-
sional designers. While producing excellent results, professional
interior design, done by artists, is a time-consuming process. With
the growing popularity of large-scale virtual 3D environments for
architectural visualization and the game industry, the manual in-
terior design of virtual scenes becomes prohibitively expensive in
terms of time and resources. Therefore, methods for automated
interior design are necessary to speed up this process.

The problem of automated interior design was recently addressed
by stochastic optimization methods [Merrell et al. 2011; Yeh et al.
2012; Yu et al. 2011]. Majority of previous methods are limited
to search in fixed-dimensional space of furniture configurations
while the furniture objects are selected by the user. Recently, this
limitation was addressed by [Yeh et al. 2012]. The authors used
a Markov chain Monte Carlo algorithm to deal with the problem
of transdimensional search space. However, the drawback of this
method is that it requires the parameters and relationships of the
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objects to be defined by imperative programming which is not
intuitive for artists.

In this paper, we propose a novel method for automated interior
design based on genetic algorithm optimization. Our method auto-
matically generates interior design for a given room in two steps: In
the first step, furniture objects are selected and positioned into the
room in an iterative optimization process. In contrast to previous
optimization-based methods [Merrell et al. 2011; Yu et al. 2011],
our method is capable of selecting the appropriate furniture objects
fully automatically. Moreover, our method is faster than state of the
art method for objects selection and layout optimization [Yeh et al.
2012]. Our system determines the optimal layout by optimizing
the cost function formed by the extended set of interior design
guidelines. In the second step, the material assignment is optimized
to achieve harmonious color configuration and consistent material
types. Figure 1 shows the results of both interior design steps in
our system.

Automated furniture layout optimization exhibits several non-
trivial problems: High dimensionality of the search space, infinite
space of possible furniture configurations and the majority of pos-
sible furniture configurations being unacceptable in terms of in-
tersections, ergonomics, aesthetics or functionality. We solve the
problem of high dimensionality by utilizing a genetic algorithm
which is capable of optimizing multiple dimensions simultaneously.
The problems of infinite search space and unacceptable furniture
configurations are addressed in our method by utilizing interior
design guidelines. Design guidelines for semi-automated furniture
layout were previously used by Merrell et al. [2011]. In our work
we extend the set of design guidelines by new ones, suggested in
interior design literature and by professional interior designers in
an expert study. In addition to forming a cost function, we used
these design guidelines to form a set of mutations which are used
to alter the interior designs in each iteration. These mutations aid
the interior designs to evolve towards desired configurations by a
stochastically-driven heuristic.

Material selection plays an important role in interior design. The
selected materials of furniture objects should be consistent across
the room and they should form a harmonious color configuration
conforming to a specific style. Unfortunately, various 3D furniture
models contain different materials which may not fit together if used
in one room. Therefore, automated material assignment is required.
We present a fast method for optimization of material assignment
based on greedy cost minimization. The cost function is inspired
by the works of Donovan et al. [2011] and Chen at al. [2015] which
measure the color compatibility using a data-driven approach. The
novelty of our material selection is a new labeling strategy based on
material names and material categories. Additionally, we proposed
to use a unification step to increase the visual compatibility of
materials in the scene.

In order to evaluate the proposed method for automated interior
design, we performed a perceptual study based on a subjective,
two-alternative, forced-choice preference. The participants were
asked to select their preference between interior designs created
by professional artists and the ones created by our system. The

Peter Kan and Hannes Kaufmann

results of this study suggest that our method generates sensible in-
terior designs, close to the ones done by professionals for particular
scenes.

The main contribution of this paper is a novel method for au-
tomated interior design based on a genetic algorithm. Our system
achieves the full automation in generation of interior designs. More-
over, our genetic algorithm optimizes multiple designs simultane-
ously which allows the user to select from multiple sensible results.
An additional contribution of this paper is an automatic material
assignment which improves the visual quality and aesthetic look
of the resulting design.

2 RELATED WORK

Automated Interior Design. Automated interior design is an active
area of research in which the variety of approaches have been
presented. The majority of them focuses on the layout of furniture
objects in an automated or semi-automated fashion. These methods
can be classified into three distinct categories: Procedural methods,
data-driven methods, and optimization-based methods.

The methods from the first category are fast methods based
on procedural layout generation [Akazawa et al. 2005; Germer
and Schwarz 2009; Tutenel et al. 2009]. They use the set of rules,
constraints and procedures for positioning of furniture objects in
relation to the room and already arranged objects. The drawback of
these methods is that they do not consider ergonomic factors which
makes them prone to generation of uninhabitable arrangements.

Data-driven methods address the interior design problem by
utilizing information from existing layouts [Fisher et al. 2012; Guer-
rero et al. 2015; Zhao et al. 2016]. These approaches require a set of
user-created layout examples to generate new plausible arrange-
ments of objects. The advantage of our method over example-based
methods is that our method is fully automatic and does not require
the manual layout creation. Recently, two methods were proposed
which model 3D interior scenes based on the human activities per-
formed in these scenes [Fisher et al. 2015; Ma et al. 2016]. The first
method requires a 3D scan of the real environment to populate
the virtual space with objects and the second one needs the initial
scene layout to augment this layout by additional objects.

Optimization-based methods generate realistic furniture arrange-
ments by optimizing a cost function. Typically, this cost function
includes ergonomic, aesthetic and functional terms. The methods
for the optimization of furniture arrangement based on evolution-
ary computing were proposed in [Akase and Okada 2013; Sanchez
et al. 2003]. Similarly to these methods, our method also utilizes
evolutionary computing, however, in contrast to them, it generates
the final arrangement automatically without user assistance. Two
methods for the creation of realistic and livable furniture layouts
were presented in previous research [Merrell et al. 2011; Yu et al.
2011]. The first one utilizes simulated annealing to optimize the fur-
niture arrangement in a given room. The second method [Merrell
et al. 2011] assists a user in creating an optimized interior design by
sampling the cost function based on interior design guidelines. The
drawback of both methods is that none of them can automatically
identify the optimal set of furniture objects for a specific room and
this set has to be selected manually. In contrast to that, our method
is fully automatic, including the selection of furniture objects and
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optimization of their arrangement. Similarly to the method of [Mer-
rell et al. 2011] we use interior design guidelines to form a cost
function. We extended this set of design guidelines by 3 new prin-
ciples suggested in literature and by professional designers in an
expert study. Moreover, we introduced 8 new mutations (moves)
which enable faster exploration of search space.

The problem of automatic furniture selection and layout, requir-
ing transdimensional optimization, was addressed in past by Yeh et
al. [2012]. The authors proposed to use a stochastic Markov chain
Monte Carlo sampling to explore the space of possible furniture
configurations. In their system, the constraints of furniture objects
are defined in an imperative programming language. The advan-
tage of our method over [Yeh et al. 2012] is that in our system the
furniture constraints are specified in an user-friendly interface as
parameters.

In addition to furniture layout, material selection is an important
step in interior design process. A method which automatically sug-
gests materials for 3D objects was presented by Jain et al. [2012].
This method uses a data-driven model of shape-material relation
to suggest a new material for a given object. Chen et al. [2015]
presented a method for automatic material suggestion for indoor
scenes. The authors used a set of local material rules and global
aesthetic rules to be optimized to achieve visually plausible mate-
rial suggestions. Similarly to our method, they used a data-driven
approach for the calculation of color harmony [O’Donovan et al.
2011].

Interior Design Guidelines. Interior design guidelines are one of
the key factors used by interior designers when creating a new
design for a specific room. Therefore, an extensive literature exists
which discusses these guidelines. In order to form the cost function
in our optimization, we created mathematical expressions repre-
senting the guidelines used in professional interior design [Ballast
2013; Mitton and Nystuen 2011; O’Shea et al. 2013] as well as the
ones previously presented in the area of computer graphics [Merrell
et al. 2011]. Additionally, the mutations in our genetic algorithm
are also based on interior design guidelines.

3 FURNITURE LAYOUT OPTIMIZATION

Our method for automated interior design utilizes a genetic algo-
rithm [Holland 1992] to select and arrange furniture objects in a
given room. The proposed genetic algorithm optimizes the pop-
ulation of interior designs (individuals). We use the set of design
guidelines to form our cost function which assesses each individual
interior design in terms of ergonomics, aesthetics and functionality.
The goal of our genetic algorithm is to find a set of furniture objects
and their arrangement, for a given room, which minimizes the cost
function.

3.1 Genetic Algorithm

Our genetic algorithm is optimizing the population of furniture
layouts in a process which is mimicking evolution in nature. The
population is initialized by layouts with randomly selected furni-
ture objects from the database. The probability of an object being
selected for the room is proportional to the importance of this object
for a specific room (See Section 3.2). Additionally, the position and
rotation of each object is randomly chosen. After the population is
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initialized, the following steps are iteratively performed: Evaluation
of the cost function, selection of the best individuals, creation of
new individuals by crossover, and altering individuals by mutations.
The outline of the algorithm is depicted in Figure 2. Any change in
interior design causing objects intersection is rejected during our
optimization.

We employ an island model genetic algorithm [Grosso 1985]
which is designed to favor exploring the space of possible furni-
ture layouts over narrowly searching within profitable regions. The
island model genetic algorithm subdivides the whole population
to multiple sub-populations (islands). All islands are evolving sep-
arately with rare interactions between them. These interactions
typically include migration of the best individuals amongst islands.
As a migration strategy, we use an approach similar to [Andalon-
Garcia and Chavoya 2012] which migrates the best individual from
each island to the next island in each n-th iteration. We set n to 10
in our implementation. We used four islands in our experiments
each containing 50 individuals.

3.2 Furniture Categories

We classify all furniture objects into distinct categories in our ge-
netic algorithm optimization. These categories correspond to the
types of objects, e.g. "chair” or "table". All objects from one category
share the same properties which are used in the expressions rep-
resenting interior design guidelines. These properties correspond
to the measurements and relations used in the professional design
practice [Merrell et al. 2011; O’Shea et al. 2013; Panero and Repetto
1975]. The cost function (Section 3.3) uses object properties to as-
sess the fitness of each design with respect to design guidelines.
The following properties are used in our method for each category
of objects:

e Clearance constraints: front, back, left, right. Clearance
constraints specify the empty space around the furniture
object required for its comfortable use. In our experiments,
we used values suggested in previous research [Merrell et al.
2011].
Probability of standing against a wall. This probability
specifies how important is it for an object to stand near the
wall.
Possible parents. This property contains the list of object
categories which can be possible parents of a current ob-
ject. Additionally, the minimum and maximum distance to
a parent is used and the orientation towards the parent is
specified (front or side).
Probability of having a parent. It represents importance
for the object of being in a group relationship with the other
objects.
e Room importance. This property states how important an
object is for a specific room. For example a bed has to be
present in a bedroom, thus having importance 1.0 for this

room.

¢ Desired count. Each category contains a minimum required
and maximum allowed number of objects of this category in
a specific room. For example a maximum of one television
can be in a living room.
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Figure 2: The overview of our genetic algorithm for automated furniture layout. Each step illustrates the evolution of the set
of interior designs. Calculation of the cost for each interior design uses the weighted sum of the design guidelines terms. The
algorithm iteratively optimizes the population of furniture layouts.

Having the categories of objects, the user can simply add any
number of 3D furniture objects to the database by specifying their
geometry, category, and front direction (2D vector in a ground
plane). New categories can also be added by the user. For each new
category of objects the above listed properties have to be specified.

3.3 Cost Function

The cost function in our furniture layout optimization is based on
interior design guidelines. We firstly studied the literature in the
area of interior design [Ballast 2013; Merrell et al. 2011; Mitton
and Nystuen 2011; O’Shea et al. 2013] to summarize the design
guidelines used in professional design practice. Then, we conducted
an expert study which investigated the frequency of use for these
guidelines. Eight professional designers participated in our study.
They were asked to state the frequency with which they use each
guideline. Additionally, they could suggest other guidelines to be
added. According to the results of this study, we selected the most
frequent guidelines and added the new recommended ones to form
the set of interior design guidelines, used as terms in our cost
function. Each guideline is represented as one expression. The cost
function, to be minimized in our optimization, is then defined as a
weighted sum of these expressions:

fe= Z wigi (1)
=1

where f, stands for the cost function, w; are the user-specified
weights and g; represents particular design guidelines expressions
defined below. These expressions utilize object properties (Sec-
tion 3.2) and oriented 3D bounding boxes surrounding the objects.
The bounding boxes are used to prevent intersection of objects and
define the areas around the objects. Bounding boxes are evaluated
in 3-dimensional space to allow furniture pieces to be organized

also in a vertical dimension (See Figure 3). The following design
guidelines are summed in the cost function:

Clearance. Furniture objects require an empty space around them
to be used for their primary function. Some objects require direct
access from one or more sides. The clearance guideline represents
this requirement. We model the clearance guideline as the amount
of overlap between objects’ bounding boxes extended by clearance
constraints:

1
T TR (T Z

by, byeA:by#by

V(i)/l N by) 2
(b1)

The clearance expression is evaluated in a pairwise manner. by
and b, are extended bounding boxes from the set A. The set A
contains extended bounding boxes of all furniture objects in one
furniture layout in union with bounding boxes of walls, windows
and doors. Function V returns the volume of the 3D geometric
shape. | A| denotes the size of set A.

Circulation. The circulation guideline expresses the need of fur-
niture objects to be physically accessible by humans to serve their
function. No part of the room should be blocked to be livable and
usable for humans. We express this guideline by the number of
objects which are not accessible from the entrance of the room. In
order to calculate this number, we need to employ a path finding
algorithm and evaluate if the path exists from the entrance to the
furniture object. Our method uses backtracking to find the possible
paths in a discrete space. This is done in three main steps: In the
first step all furniture objects and walls are projected to the ground
plane and rasterized into a 2D grid. In the second step, we apply
a dilation operation on these projections to account for the body
size. This operation dilates the discrete projections by a disk of the
specified human body radius. In the third step the front sides of the
furniture objects are marked in a grid as targets to be accessed by
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Figure 3: The painting above the bed demonstrates the capa-
bility of our system to arrange objects also in vertical space.
This benefit is due to the utilization of 3D oriented bounding
boxes for collision detection.

the path starting from the room entrance. Then, the backtracking
algorithm is started. The algorithm returns the number of accessible
targets nq. We mark the total number of furniture objects present
in current layout as n;. The expression for the circulation guideline
can be then written as:

gr =1-na/m 3)

We pose a hard constraint for all layouts in the population to

contain at least two furniture objects. Therefore, n; > 1 holds for
all defined equations and division by zero is avoided.

Group Relationships. The furniture objects in interior design can
be grouped based on their function and type. Often a group of ob-
jects has their parent (e.g. the chairs are located around the table).
The spatial organization within a group conforms to the specific
requirements. One of these requirements is the comfortable con-
versation of people [Merrell et al. 2011]. Comfortable conversation
depends on placement of seats which should support eye contact
and normal speech volume (i.e. limited distance). We express the
group relationships cost in terms of average distance of objects of
the same type:

1
99 = Jer el - vd, Z

&1, 89€C:1 285

G@nele -l (4)

where d, is the diagonal size of the room in the ground plane. C
is the set of all centers of furniture objects in the room. Function
G(c1, ¢3) returns 1 if the centers ¢1, ¢3 belong to the objects of the
same category and 0 otherwise. |¢; — ¢2| represents the size of the
vector. Additionally to the cost function, the group relationships
are also modeled in the mutations of the genetic algorithm. This
ensures that the objects which require a parent tend to have one.

Alignment. In interior design, the objects should be properly
oriented and aligned to their supporting surfaces. For example
the cupboard should be oriented by its back side towards a wall.
Additionally, the furniture objects should be aligned to the other
objects. We model the alignment guideline by the variance of the
angles between front vectors of objects in combination with a
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probabilistic distance measure between objects and their nearest
wall. The alignment term is evaluated in a pairwise manner:

1 § —2
= (a - a) + (5)
S wrgvi-y L v
01, 09€V:01#0y
a=1-0.5(0 -0 +1) (6)

a is proportional to the angle between two front vectors ¥ and
U2. V is the set of front vectors of all furniture objects. We also
include the front vectors of room walls into V' to allow furniture
objects to be aligned with walls. @ is the mean value of « for all
vectors in V. Equation 6 remaps the cosine of the angle between
U1 and U from range (-1,1) to (0,1) to be usable as a term of the cost
function.

In addition to appropriate alignment of furniture objects, some
of them should stand against a wall. Thus, we add the wall distance
term g,, to the alignment cost. This term is using the probability of
standing against a wall p,, defined for each object category (Section
3.2).

1 > N
9w = prar Pwlpp — proj(pp)l ()

PpeP

Py, is the point on the back side of the furniture object. The set
P represents the set of these back points from all furniture objects
present in current interior design. The function proj(p) projects
back point py, to its closest wall and returns this projected point. d
is the diagonal size of the room in the ground plane. If the room
is not rectangular, then d, is calculated as the diagonal size of the
room’s bounding box.

Distribution and Rhythm. According to this guideline, the fur-
niture objects should be properly distributed in space and the fre-
quency of this distribution should follow a rhythm. For example
the paintings should be distributed along a line on the wall with the
rhythmically repeating distances between them. We model the cost
for this guideline as a variance of the relative distances between
pairs of objects:

1 —
- d -y 8
ey 2y 4 ®
21.2,eC:2,£8
d= |01d— & ©)
m

d stands for relative distance between two points which is the
Euclidean distance divided by the maximum distance d, between
two objects in the scene. d is the mean relative distance between
all pairs of objects in the interior design.

Viewing Frustum. In an optimized layout, some objects should
be visible from the others for their primary function (e.g. television
should be visible from sofa). In our method these objects conform to
the parent-child relationship. Therefore, we calculate the viewing
frustum cost by casting rays between all parent-child pairs and
count the number of intersecting rays with other furniture objects.
We denote the number of intersecting rays as n; and the total
number of objects in interior design as n;. The viewing frustum
cost can be calculated as g, = n;/n;.
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Functional Needs. Furniture objects in a room serve for particular
functions or activities in this room. Therefore, a specific room
should contain interior objects which are important for activities in
this room. For example the living room should contain the TV and
sofas. Our expression for functional needs consists of two terms:

_ lZioeI 1-ip +lzoceo A(oc) 10
Y 2 @ ‘2 o to
The first term in Equation 10 is related to the room importance
(Section 3.2) of all furniture objects present in a current design
individual. This term assigns higher cost to the objects which are
less important for the current room. The importance cost sums up
the importance values i, of objects present in the design individual.
I is the set of these importance values. The second term is related
to the desired count of objects of a specific category in a room (Sec-
tion 3.2). Function A(o.) calculates the difference between objects
count of category o, and the desired objects count of this category.
The set O represents all categories present in the current interior
design.

Proportion. The furniture objects should have appropriate pro-
portions to the specific room and to each other. Additionally, if
there is too much of empty space in a room, new objects should be
generated. We model the cost for this guideline as the ratio of the
volume covered by the objects to the room volume:

- Vo/Vy,0
9p = max(ry 0/ Vr,0) 11)

v

Vo is the volume of all furniture objects together and V; is the
total volume of the room. These two volumes are compared with the
required ratio of the volume covered by furniture r,,. We used the
values of r;, between 0.2 and 0.35 in our experiments. We empirically
found these values to work the best for our optimization. The
volume V, depends also on the room height. Therefore, higher
furniture objects are preferably selected for higher rooms according
to the proportion guideline.

The defined design guidelines play an important role in the
optimization of furniture layout. In our experiments we set the
weights for all guidelines to 1.0 except circulation with weight 1.1
and proportion with weight 2.5. The weight for proportion was
increased because this guideline is essential for inserting objects to
the scene.

3.4 Selection

Our genetic algorithm optimization is advancing every iteration
by creating a new generation of furniture layouts from the current
population. In order to select the design individuals which will sur-
vive to the next generation, we use a tournament selection [Miller
et al. 1995]. In the tournament selection, each individual to survive
is identified in two steps: First, k individuals are randomly selected
from the island’s sub-population. Second, the individual with the
lowest cost value, from these k selected ones, is the winner of the
tournament and proceeds to the next generation. We set k = 6 in
our implementation. By this method our algorithm selects 70% of
the population to proceed to the next generation. The remaining
30% is generated by crossover from the selected parents. Finally,
we apply mutations to 50% of this newly created population.
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3.5 Crossover

Crossover is a computational operation analogous to reproduction
in nature in which a new offspring is created from two parents by
combining their genomes. A genetic algorithm uses crossover to
create a new individual from random sub-parts of selected parents.
In the domain of furniture layout, an individual is formed by the
configuration of furniture objects. Therefore, crossover can be nat-
urally performed by selecting random furniture objects from each
parent layout and combining them together to form a new furni-
ture layout. In our method, 30% of the new generation is formed by
crossover from 70% of the selected individuals. Parents for crossover
operation are chosen randomly. A new individual is formed by ex-
changing approximately half of the furniture objects from the first
parent with objects from the second parent. If the furniture object
from the second parent has children, these children are also inserted
to the new individual. The selected furniture object is not inserted
into the new individual in case of causing intersections with already
existing objects.

3.6 Mutations

At the end of each iteration, our algorithm mutates 50% of the
design individuals by random mutations to favor the exploration
of new furniture configurations. The following mutations are used
in our method to alter the individuals:

(1) Randomly change the position of furniture object.

(2) Randomly change the orientation of furniture object.
(3) Align furniture object with the closest object.

(4) Align furniture object with the closest wall.

(5) Snap furniture object to the closest object.

(6) Snap furniture object to the closest wall.

(7) Connect furniture object with one of possible parents.
(8) Add new children to the parent object.

(9) Add new furniture object to the design individual.
(10) Remove random object from the design individual.

The mutations 1 to 5 are executed for each furniture object in the
interior design with the probability of 0.3. We set this probability
empirically based on the results of our experiments. Mutation 6 is
performed on each object with the probability given as the property
of a specific object category (See section 3.2). Mutation 7 is executed
for each furniture object with the probability of having a parent,
defined for the specific object category. Mutation 8 is performed on
each object with the empirically set probability of 0.6. Finally, the
probabilities of adding and removing the objects to/from the design
are set to 0.5 and 0.1 respectively. If the mutations 8 and 9 are adding
a new child object to a design, we use a special heuristic to achieve
the alignment of children around parent object (e.g. the chairs
around the table). This heuristic positions the child objects to the
opposite sides of the parent object and aligns them based on their
count. We accept only mutations which do not cause intersections
of objects.
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4 MATERIAL OPTIMIZATION

The second step in our system is the optimization of material as-
signment to the furniture objects and to the room. Our main goal
is to reach consistency of the selected materials in a room and
harmonious colors. We achieve the consistency of materials by
introducing surface categories and selecting one common material
for all surfaces which belong to a particular category. We use the
following categories of surfaces in our experiments: Fabric, wood,
glass, chrome, metal, plastic, ceramic and stone. Our method uses
the database of materials to randomly assign one material to each
surface category.

Additionally, we use the material names from the imported geo-
metric models to identify the surfaces from specific categories. The
surface is assigned to a category if the category name matches part
of the material name on this surface. This method groups the sur-
faces with the same category. The color harmony of the materials in
aroom is then achieved by optimizing the material assignment for
each category with respect to a data-driven cost function. Our cost
function models color compatibility between the colors present in
the scene. We use a greedy algorithm to minimize this cost function.
Following steps are performed in each iteration of the optimization:

(1) Randomly select a material for each category and assign it
to the surfaces of this category.

(2) Render the scene from four viewpoints aligned with room
corners.

(3) Extract 5 dominant colors from the rendered images.

(4) Evaluate color compatibility in the scene by calculating the
cost of the extracted 5-color palette.

(5) If the cost function of newly assigned materials is lower
than the previously assigned ones, accept this new material
configuration.

4.1 Color Compatibility

The optimization of materials uses color compatibility to assign
cost to each material configuration in the scene. We employ a data-
driven method, inspired by [Chen et al. 2015; O’'Donovan et al. 2011],
to calculate color compatibility in the scene. Our method uses color
palettes, consisting of 5 colors, to represent dominant colors in the
scene. The colors in color palettes are represented in CIELab color
space. We extract a color palette from rendered images of the scene
by k-means clustering. Then, we use the database of harmonious
color palettes to calculate the cost of the extracted color palette.
The interior design scene with its extracted color palette can be
seen in Figure 4.

The cost of the extracted color palette f, is calculated by the
weighted distance to the k-nearest color palettes from our database
of harmonious colors:

k
fp= D (=rd)lpi = pel (12)
i=1

pi is the i-th closest color palette to the extracted palette p, and
ri is the rating of the palette p;. The ratings in our database are
normalized. We used k = 10 in our experiments. The distance of
palettes |p; — pe| is calculated as the sum of distances between
individual colors in palettes in CIELab color space:
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5
Ipi = pel = ), Ipic = pecl (13)
c=1

where p; and pe. are c-th colors from the corresponding palettes.
The distance |pjc — pec| is the Euclidean distance in the CIELab
color space. The colors in all palettes are ordered by the L value to
calculate distances between corresponding colors.

Figure 4: Top: The optimized layout and materials of in-
terior design by our system. Bottom: The extracted 5-color
palette.

Color Compatibility Database. Our database of harmonious col-
ors consists of 100000 color palettes with assigned ratings. This
database was formed by using harmonious color palettes, created by
artists, obtained from the online resource www.colourlovers.com.
We downloaded 500000 color palettes with user ratings from the
Colourlovers website. These palettes contain colors used in general
design tasks including webdesign, architectural design, interior
design, etc. Similarly to [Chen et al. 2015], we used an image-based
approach to select the palettes suitable for interior design. We
downloaded 10000 images of interior designs from the internet
and extracted their dominant color palettes by k-means clustering.
Then, the interior design suitability rating r, of each palette from
Colourlovers was calculated as the average distance to the k-nearest
color palettes from the extracted interior design palettes. The ex-
tracted palettes were added to the downloaded ones to form the
initial database of harmonious colors. Each palette from this data-
base was assigned a new rating r; calculated as r; = 0.6r¢ + 0.4r¢
where r, is the rating extracted from interior design images and
re is the user rating from the Colourlovers database. Both ratings
were first normalized by the maximum values. The weights 0.6 and
0.4 were set empirically. The palettes extracted from images had
assigned the user rating r. of 1.0.

Finally, our database of harmonious color palettes was formed
by selecting 100000 color palettes with the best ratings r;. This
database was used in our greedy material optimization to select
the material configuration with harmonious colors. The results
of interior designs before and after our material optimization can
be seen in supplementary files. Additionally, the capability of our
system to optimize not only the materials of furniture objects but
also the materials of walls and floor is demonstrated in Figure 4.
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5 RESULTS

We implemented the presented algorithms in Unreal Engine 4 and
our experiments were executed on a desktop PC with the 3.2 GHz
hexa-core CPU and GeForce GTX 980 graphics card. We evaluated
the performance of our system in three different rooms: Kitchen, liv-
ing room and bedroom. Firstly, our system automatically furnished
these rooms with interior objects and then it selected consistent
materials with harmonious colors for the scenes. Additionally, we
conducted a perceptual study to assess the quality of generated
interior designs. The interior designs, generated by our system, can
be seen in Figure 1, Figure 3, Figure 4 and in supplementary files.
The computational times of our methods for all furnished scenes
are shown in Table 1. We used 42 3D models of furniture objects
and 16 furniture categories in our experiments. In addition to the
object database, a material database was employed which consists
of 80 materials for furniture objects, 19 materials for room walls,
and 15 materials for floor. The resolution of rendering from room
corners in material optimization was 256x256 for each camera.

Table 1: Computational time of our system. Iter. denotes the
number of iterations in our genetic algorithm. This number
was determined empirically for each scene as a tradeoff be-
tween optimality of the cost and variability of the results.

Scene Iter. | Layout opt. | Material opt.
Kitchen 20 12s 14s
Living room | 100 51s 15s
Bedroom 30 16 s 14s

Additionally, we evaluated the scalability of our genetic algo-
rithm by plotting the dependency of computational time on the
number of iterations (Figure 5). The resulting graph indicates the
linear dependency of time on iterations count.
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Figure 5: Dependency of computational time of layout op-
timization on the number of iterations. The time was mea-
sured using the kitchen scene.

5.1 Perceptual Study

We evaluated the capability of our system to generate sensible and
livable interior designs by conducting a human-oriented perceptual
study. The main goal of this study was to investigate if there is
a significant difference between the interior designs created by
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our system and the ones created by professional interior designers.
Therefore, we asked two interior design artists to manually furnish
our virtual testing rooms for comparison with our algorithm. Sec-
ondly, they were asked to also manually assign materials to the
objects in the scenes. The database of available furniture objects
and materials was the same for both our algorithm and the artists.
We used three test scenes to compare our algorithm with manually-
created interior designs: Kitchen, living room, and bedroom. Two
conditions, with original materials and with optimized materials,
were evaluated for each test scene. In total 6 scenes had to be eval-
uated. 30 users participated in our perceptual study, including 23
males and 7 females, in age from 23 to 49.

Study Design. Our null hypothesis Hy was that there are no
significant differences of user preference between automatically
created interior design and manually created interior design. The al-
ternative hypothesis H; was that there are significant differences of
preference between these two conditions. We conducted our exper-
iment using a subjective, two-alternative, forced-choice preference
approach similar to [Jimenez et al. 2009; Yu et al. 2011].

Procedure. Our perceptual study was conducted in the form of
an online questionnaire. Each question of the questionnaire showed
two interior designs for side-by-side comparison by the user, one
created by our system and one created by the artists. Each interior
design was represented by three images: Two images from the first-
person perspective and one image from the top. For each question
the user had to select which interior design, from two alternatives,
would he/she prefer to live in. The questionnaire consisted of 6
questions, three for furniture layout with original materials and
three for furniture layout with optimized materials. The order of
the questions was randomized. The sides (left, right) of automatic
and manual designs were also randomized.

Outcome and Analysis. The main focus of our study was to val-
idate the quality of interior designs created by our system. Thus,
we investigated if our designs are close to the ones created by pro-
fessionals in terms of user preference. If there are scenes with no
statistically significant difference in preference between our designs
and manual designs, our system may be considered successful.

We used a Chi-square nonparametric analysis to determine any
statistical significance in each of our 6 conditions (3 rooms, without
and with material assignment). The Chi-square analysis in one-
dimension was used for each of these conditions separately. Each
condition contained 30 preference answers, thus the frequencies of
preferences were compared to an expected 15/15 result. The Chi-
square values were computed and tested for significance. The results
of this analysis are shown in Table 2. Additionally, the measured
frequencies of user preferences are shown in Figure 6.

The results of the Chi-square analysis suggest that there is no
clear winner, amongst our method and the manual design, which
would significantly outperform the other in all tested scenarios.
The kitchen scene results are particularly interesting because our
method significantly outperformed the manual design for the layout
scenario (p = 0.028) with 21 votes in favor of our method and
only 9 votes which preferred manual design. Additionally, there
was no significant difference for the kitchen scene in the scenario
with optimized materials. In case of the living room scene, the
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manual design significantly outperformed our method in the layout
scenario. However, after material assignment, our method was
able to revert this trend and got even more preferences than the
manual design. In this case, the difference was not statistically
significant. In the bedroom scene, the manual design significantly
outperformed our method in both layout and material conditions.
We hypothesize that the preference of the manual design in this
case was caused by the algorithm positioning the bed side close to
the wall. Nevertheless, our algorithm can suggest layouts for the
bedroom scene where the bed can be accessible from both sides.

In summary, 3 scenarios in our experiment showed significant
preference of the manual design over our method and 3 scenar-
ios showed either no statistical significance or preference of our
method. Thus, we conclude that our method can generate sensible
and livable interior designs which are comparable to manually-
created ones for particular scenes. Additionally, the extension of
our cost function and further experiments would be vital for gener-
alizing the preference of our method in all interior spaces.

Table 2: The results of the Chi-square analysis. Values
in boldface indicate significant difference (level of signifi-
cance = 0.05). The left column shows the results for layouts
with original materials and the right column shows the re-
sults for layouts with optimized materials. Please note that
while the result of the layout with original materials in the
kitchen is significant, the users preferred the design gener-
ated by our system rather than the one created by the artist.
This preference can be seen in Figure 6.

Layout only Layout + materials
Scene x2-value p-value | y%-value p-value
Kitchen 4.800 0.028 0.133 0.715
Living r. 6.533 0.011 0.133 0.715
Bedroom | 19.200 < 0.001 6.533 0.011

M Algorithm's layout

Artist's layout

Kitchen 9
Kitchen + OM
Living room
Living room + OM

Bedroom

Bedroom + OM

Figure 6: Frequencies of user preferences in our study.
Each of the 6 displayed conditions represents the prefer-
ences amongst answers of 30 participants. The conditions of
kitchen layout and living room layout with optimized mate-
rials show the preference of our method before the manual
design. In the other conditions, the manual design was pre-
ferred. OM stands for optimized materials.
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6 DISCUSSION

The results of perceptual study indicate that our method is capable
of producing sensible and livable interior designs. In the kitchen
scenario, our method was able to significantly outperform the man-
ual design in terms of the user preference. Additionally, in the living
room and bedroom scenes our method for automated material as-
signment increased the frequency of preference of our generated
designs (Figure 6).

Based on the varying significance values and trends in user pref-
erence, we can hypothesize that the quality of the generated interior
design depends on the type of the room. Our algorithm performed
very well in the kitchen scene while it was not preferred by par-
ticipants in the bedroom scene. Therefore, future investigations
can help to identify the source of this variability and consequently
extend the cost function.

We implemented our methods in Unreal Engine 4. Thus, our
algorithms can be easily integrated into video games, virtual reality
systems, or other real-time applications to generate large-scale in-
door virtual environments. Moreover, the generated interior designs
can be easily edited by the artists, using the Unreal Editor.

7 CONCLUSION

We have presented novel methods for automated furniture lay-
out and material assignment in interior scenes. The advantage
of our methods over state of the art is that our system can auto-
matically add furniture objects to the room. This object addition
is implemented as a mutation of interior design in our novel ge-
netic algorithm. Moreover, we have presented and implemented an
extended set of interior design guidelines which form the cost func-
tion. Our results show that the optimization of this cost function
by the genetic algorithm leads to consistent and livable interior
designs. Finally, the results of our perceptual study suggest that our
methods can generate interior designs which are close to the ones
created manually by professional designers for specific scenes.
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